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ABSTRACT

High-resolution (15"), filled aperture maps of the CO (J=l-0) line emission

have been obtained of several nearby, C0-bright galaxies like M82, M83, IC342,

NGC891, etc. in order to study star forming activity in these galaxies.

i. INTRODUCTION

Star formation in galaxies is intimately related to their molecular hydrogen

content from which stars form. In order to obtain high-resolution, high-sensi-

tivity and filled aperture maps of H2 gas in spiral galaxies, we have conducted a

survey of the CO (J=l-O) line emission at 115 GHz using the 45-m telescope at the

Nobeyama Radio Observatory. The survey already includes nearby, CO-bright galax-

ies like M82, M83, M51, NGC253, NGC891, IC342, and NGC6946. We have obtained an

almost complete map of M82, a map of the bar and central region of M83, a map of

the central region of IC342, high-sensitivity scans along the major and minor

axes of the edge-on galaxy NGC891, and several incomplete maps of the other gal-

axies. The survey is being extended to more galaxies. In this paper we report

the results for NGC891, M83, IC342, and M82.

2. NGC891

The large-scale distribution of the CO line emission in disk galaxies has an

important implication for understanding the structure and dynamics of gaseous con-

tent and the evolution of star-forming activity on a galactic scale. In the case of

edge-on galaxies, one dimensional scan maps can give fairly complete information

about the large-scale CO distribution in a realistic observing time.

NGC891, a typical edge-on Sb, shows a very similar property to our Galaxy•

It has been observed in CO using the FCRAO 14-m telescope with a resolution of

45" (Solomon 1981;1983). The CO intensity distribution is characterised by a

ring-like concentration at radius 5 kpc and a central hole. It is well known

that the Milky Way, a typical Sb galaxy, has a strong central concentration of

molecular gas forming a dense nuclear disk (e.g. Liszt and Burton 1978). It is

therefore interesting to clarify by high-resolution observations whether Sb gal-

axies like NGC891 have a nuclear molecular disk. Another important implication

of the CO observations of edge-on galaxies is to derive a rotation curve of mole-

cular gas without the ambiguity of inclination angle. A CO rotation curve is

especially important to see the dynamics of the central region, for the HI emis-

sion has a depression, giving poor information about the central region (Sancisi

and Allen 1979).

Observed CO line spectra along the major axis are shown in figure i. The

intensities are corrected antenna temperature calibrated with respect to Ori A
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Fig. i. 12C0 (J=l'0) line

spectra along the galactic

plane of NGC891. The

intensity is the corrected

antenna temperature TA*

with respect to a standard

source Ori KL which had

TA*= 35 K with the 45-m

telescope. Here X is the

position off-set from the

centre toward NE along the

major axis.
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with TA = 35 K. Figure 2 shows a position-velocity diagram along the major axis.
The rotation curve as derived from the terminal velocities _s drawn with the

dashed line) coincides with the HI rotation curve of Sancisi and Allen (1979).

From the rotation curve the dynamical mass contained within 15 kpc (225") is

estimated to be 2 x i0 II M®. The diagram shows that there exist many clumpy

structures, which we identify with tangential directions of spiral arms, except

for the central strong peak.

The distribution of integrated CO intensity is shown in figure 3. We find

that the radial CO distribution is composed of two components: a broadly spread

main-disk with the maximum at 60" (5 kpc) radius, tailing as far as to 15 kpc

from the center, and a strong concentration toward the center, having a sharp

peak of ICO = 26 K km s-1, whicb we refer to as the nuclear disk.

The main disk is distributed on a broad ring of radius 5-15 kpc with its

peak at about 5 kpc. This well resembles that of our Galaxy which has the 5-kpc

molecular ring. The main disk is well visible at least up to 15 kpc and appears

to extend further beyond this radius. The total mass of molecular hydrogen gas,

as derived using the same conversion factor as that used in Solomon (1983) but

taking care of the difference between the antenna temperature of Ori A for the

45-m telescope and the 14-m telescope, is about 7 x 109 M o. This shares 4 percent

of the dynamical mass and this fraction is comparable to that in our Galaxy.

The nuclear disk has a radius of about 0.5 kpc, but the thickness is not

resolved. This component has been detected for the first time for an external Sb

galaxy, which confirms that NGC891 has a similar characteristics to our Galaxy, as

the size and mass, 3 x 108 Mo, of molecular gas, are comparable to the nuclear

disk in our Galaxy. The velocity dispersion near the center of this component is

more than i00 km s-I. The high dispersion may be .partly due to internal motion

of gas and partly to the steep gradient of the rotation curve. From the velocity

dispersion a dynamical mass of 109 M_ is derived. This leads to a fractional

mass of molecular gas in the nuclear disk as high as 30 percent, much higher

than that observed in the main disk. This suggests either that the molecular gas

is really rich or that the conversion factor from ICO to H 2 mass adopted here

(Solomon 1983; Young and Scoville 1982) was too large. If the latter is the

case, we have a higher rate of production of heavy elements in the central region

than in the main disk: if the molecular mass shares _i0% of the dynamical mass

as in the main disk, the CO abundance in the nuclear region is about three times

as large as that in the main disk.

Figure 3 compares the CO distribution with those of HI (Sancisi and Allen

1979) and radio continuum (Allen et al. 1979). The CO main disk has a similar

distribution to that of the broad disk of the continuum emission. The HI gas is

more widely distributed than CO and continuum. The CO nuclear disk coincides

well in position with the central peak of continuum. This shows a significant

correlation between the nuclear activity and the existence of a dense molecular

disk in the center. A detailed description is given in Sofue et al. (1986).

2. M83

The SABc galaxy M83 is the nearest barred spiral (3.7 Mpc distance). The

bar structure in a galaxy gives a deep nonlinear potential wave in the rotating

material. The interstellar gas suffers a strong shock wave in such a deep
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Fig. 2. Position-velocity diagram along the galactic plane of

NGC891. The contours are in steps of 20 m K TA* and the lowest
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potential (S_rensen et al. 1976; Roberts et al. 1979). In fact well developed

dark lanes are found along the leading sides of the bar of M83 indicative of a

shocked concentration of molecular gas. The strong shock will cause loss of

angular momentum, leading to an accumulation onto the galactic center. Infall of

gas toward the center may result in a high rate of star bursting, which is

observed as the strong radio continuum emission near the center (Ondrechen 1985).

The radio continuum observations show evidence of nonthermal emission along the

barred shocked region. It is therefore important to investigate the motion of

gas in and around the central barred region.

The high resolution map of HI line emission by Allen et al. (1986) shows,

however, a depression in the central region including the bar, giving no informa-

tion about the motion of gas there. In order to see the motion in the bar and

gaseous concentration toward the center we have performed a survey of the CO line
emission as the tracer of the molecular hydrogen gas. Our CO map covers a region

of 3.5' xl' along the bar, where most of the bar is included. Figures 4 and 5

show the distributions of total intensity, namely the H2 column density, and the

velocity field, respectively (Handa et ai.1986).

The gas is concentrated in the central i' x0.5' (ix0.5 kpc) region, where

about 40% of the gas in the observed region is found. The central gas distribu-

tion is elongated roughly along the bar, but shows an S-shaped ridge with two

strong peaks, one is associated with the center, and the other is more shifted

from the center by i0" (200 pc).

In the barred region a rather broad CO distribution is found, and the peak

positions of the CO intensity runs approximately along the leading sides of the

bar.

A clear noncircular motion is found in the central i' (i kpc). The amount

of the noncircular motion subtracted for the circular rotation is about 20-30 km

s-I. This may be a superposition of deceleration by the shock and the infall

motion. Beyond i' from the center the velocity field resembles the circular

rotation, although the sensitivity of the present observations might not be

enough to detect weak noncircular motion.

The strong concentration of molecular hydrogen toward the center and its

noncircular motion is suggestive of the infall of matter due to the barred shock

wave, and must be intimately related to the activity of star formation observed

in optical, infrared, UV, X-ray, and radio observations (Rieke 1976; Bohlin et

al. 1983; Trinchieri et al. 1986; Ondrechen 1985).

4. IC 342

Extensive CO line observations of this bright Scd galaxy have been made by

Rickard and Palmer (1981) and Young and Scoville (1982). IC342 has a bright

optical nucleus with a dark lane elongated in the north-south direction. A

prominent molecular bar has been found lying on the dark lane using the Owens

Valley interferometer (Lo et al. 1984). Their field of view was spatially

limited by the primary beam as well as by the velocity coverage of the spectro-

meter. It is therefore not known whether the molecular bar is connected to the

outer spiral arms, whether the bar is surrounded by more broad gas distribution,

etc. We have made a highest resolution CO map accessible by a single-dish with
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a sufficient velocity coverage (Hayashi et al. 1986).

Figure 6 shows a distribution of the integrated intensity of CO line emis-

sion. The dark circle is the center of the galaxy as determined by 2.2 _m

infrared emission (Becklin et al. 1980). The CO emission is concentrated in the

central bar whose size is 1.3x0.6 kpc after being deconvolved from the beam. Little

CO emission isseenoutside the bar: the molecular bar is localized within the opti-

cal bulge and is not connected to the outer spiral arms. The result is consis-

tent with that of Lo et al. (1984), but our result suggests that the bar is more

spread in the minor axis direction than the interferometer result. The beam-

deconvolved width of the bar is 0.6 kpc and is considerably wider than that

measured by Lo et al. (1984). The narrower width of their CO map might be caused

by the limited velocity coverage of their spectrometer.

The CO bar has a double-peaked structure with a shallow dip toward the

nucleus, being symmetric with respect to it. The two maxima lie about 200 pc

away from the nucleus. The molecular hydrogen mass of the nuclear bar is esti-

mated to be 2 x 108 M o. Five percent of the total H2 mass is accumulated in the

central small area. This may explain the vigorous star forming activity in the

nuclear region of this galaxy (Becklin et al. 1980; Turner and Ho 1983).

Figure 7 shows equal-velocity intensity maps, where intensities at every 20

km s-I are shown in the form of contour maps. At the systemic velocity, the

intensity distribution has a symmetric bar structure, whereas at 30- 50 km s-I

there exists a dense complex at 15" to the NE of the center, and no counterpart

to this complex is seen at the opposite side at -i0 _ i0 km s-I. The velocity

distribution shows a significant displacement from a circular rotation consist-

ent with Lo et al. (1984). The noncircular motion may be related to the forma-

tion of the bar concentration of gas in the central region.

5. M82

The peculiar edge on galaxy M82 is well known with its filamentary structure

running perpendicularly to the galactic plane, which suggests an intensive out-

flow of gas from the disk (Lynds and Sandage 1963). The dynamic state of the gal-

axy may be caused by star formation activity near the center (Rieke et al. 1980;

Kronberg et al. 1985). The active star formation must be deeply related to the

dense molecular hydrogen gas concentrated near the central region (O!ofson and

Rydbeck 1984; Nakai et al. 1986; Lo et al. 1986).

Figure 8 shows the intensity distribution of the CO line,emission in the

central 40" of M82 as observed with the 45-m telescope. Figure 9 shows a distri-

bution of volume density of H 2 gas obtained by deconvolving the observed CO intensi-

ty on the assumption of a cylindrical symmetry around the rotating axis. It is

remarkable that there exists a hole at the center, surrounding which we find a

"200-pc ring', or a doughnut-shaped structure. This ring has a steep density gradi-

ent toward thecente_ whereas it _widely spread towards the outer side, The ring is

further associated with spur-like protrusions extending toward the halo. The pro-

trusions make a large-scale cylindrical structure with the height 500 pc from the

galactic plane.

Velocity variation along the major axis shows a normal rotation of the disk

at velocity of i00 km s-I. Along _h_ m_nor axi_ and alon_ the cylindrical struc-

189



Y.SOFUEETAL.

NW

%

%

20 'l

I

O3

X

O"

n-
O
Z

SE

-20"

-40"

40" 20" 0 " -20" -40"

NE MAJOR AXIS SW

Fig. 8. Integrated intensity of CO line emission of M82. Note the double

peaks which indicates the ring-like structure. Dashed lines show CO ridges

extending toward the halo, which we interpret as due to cylindrical distri-

bution of molecular gas perpendicular to the galactic plane. The lowest contour

level and the contour intervals are 20 K km/s. The maximum intensity is 230 K

km s-l_

190



CO OBSERVATIONS WITH THE NOBEYAMA 45m

(PC)

6OO
W
Z

nJ 40O

{.3

F--
o 200

d
,<
(.9 0
W
"i-
F..-

_: -2000
rY
I.!..

I"--
T -400
£9

UJ
-f-

-600

r/,

40

i
i ! i |

GALACTIC
PLANE

0" 20" 40"
I f I I I I I I

0 200 400 600 (PC)

RADIUS

Fig. 9. Distribution of the volume density of molecular hydrogen calculated

based on an axisymmetric model from figure 8. The first contour and contour

intervals are 1 H 2 cm -3.

191



Y. SOFUE ET AL.

ture in the halo we find also a velocity gradient. If we take into account the

inclination of the galaxy disk, this gradient is well attributed to an outflow

motion of molecular gas. The outflow velocity is from i00 to 500 km s-I perpen-

dicular to the disk plane, depending on the inclination angle, 70o-85 °.

As the total mass involved in the cylinder is estimated to be 5xlO 7 Mo, the

kinetic energy of the outflow motion is of the order of 0.1-1.4 x 1056 ergs. Ac-

cording to the star bursting model of Rieke et al. (1980) the rate of supernova

explosions in the central few hundred pc is about 0.3 SN y-i and the duration of

the bursting activity is 5 x 107 y. Then the total energy released by SN explosions

is 2xlO 58 ergs for a single SN energy of 1052 ergs. If the fraction of energy con-

verted to kinetic energyofthegas _ 0.03 (Chevalier 1974), enough energy is given

to the gas to drive the outflow motion of the molecular cylinder.

Another fraction of the released SN energy may be used to heat up the ISM to

high temperature, and the heated-up gas will expand into the halo, forming an

X-ray halo. This is actually observed as an elongated halo of X-ray emission

perpendicular to the disk plane (Watson et al. 1984). It must be noticed that the

X-ray halo is confined by the wall of the molecular cylinder. It is likely that

the interface of the X-ray halo and the molecular cylinder has an intermediate

temperature, radiating H alpha emission. The H alpha filamentary structure may be

a view of the interface region as seen through the dusty (molecular) cylinder with

outflow motion. Figure I0 illustrates this picture.

From the observed facts we may propose the following scenario of evolution

of M82: More than 107 years ago there appeared a dwarf galaxy ('proto-M82') with

very rich content of molecular gas, possibly induced by an inflow of gas from M81

through a tidal interaction. The gas accumulated toward the center and produced a

dense molecular disk. In the central region there occurred intensive star formation

which propagated outward through the disk. Subsequent SN explosions and mass out-

flows from stars caused compression of the disk gas into a ring of high density mo-

lecular gas. In such a dense ring, especially near the inward shock-compressed side_

further star formation occurred. The ring and star bursting sites are now observed

as the 200-pc ring and associated nonthermal radio emisson. Plowed HI gas has been

accumulated in an HI ring outside the molecular ring (Weliachew et al. 1984).

Released energy through the subsequent SN events escapes into the halo, a part

of which goes to heating up the surrounding gas and a part goes to the kinetic en-

ergy of the high-velocity outflow of gas perpendicular to the disk, and is readily

observed as the X-ray halo and the molecular cylinder as described above.

The shock-compressed 200 pc ring is probably expanding. In fact, the velocity
dispersion toward the center of M82 is as high as 200 km s-I in full width. This

cannot be attributed to the rotation alone, and suggests an expansion of the ring

gas at velocity i00 km s-I. Then the expansion should have begun before 2 x 106

years ago, consistent with the duration of star bursting activity. The kinetic en-

ergy of the expanding motion is 3 x 1054 ergs as the total mass of the ring is 3 x

107 Me, again enough driven by the SN energies.

6. Discussion

The galaxies reported here all show dense molecular disks in their central
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regions. They show more or less central activity, and some show bursting star

formation. Such activity may therefore depend on the molecular gas content in

the central regions.

Table 1 lists the molecular to dynamical masses in the central few hundred

pc of the galaxies reported here, and compares their ratios of molecular to dy-

namicalmasses. Here the molecular mass was estimated using the formula given in

Sofue et al. (1986) except for M82 for which we used the value of Nakai et al.

(1986). All the galaxies show that the ratio is 0.2-0.3, which is significantly

higher than that known for the main disk of NGC891 or than in our Galaxy disk.

Table i. Molecular and dynamical masses in the central few hundred pc.

Galaxy Type Distance Region Mdy n _2 MH2/Mdyn

NGC891 Sb 14 Mpc R!500 pc _109 Mo _3xlO 8 Me _ 0.3

M83 SABc 3.7 350 5xlO 8 ixl08 0.2

IC342 Scd 4.5 500 5x108 ixl08 0.2

M82 Pec. 3.3 200 4x108 108 0.2

It is interesting to note that the ratio is almost constant for these galaxies_

which include a normal galaxy such as NGC891, though all of them show some central

activity. This implies that the anomalous star bursting activity in M82 is affected

not only by the gas density alone, but also by some other mechanism. A hint may

come from its ring structure: the 200-pc ring of M82, which likely arises from

a shock compression by a more central activity, may play an essential role in the

burst. Namely the degree of star forming activity depends on dynamics and morphology

of the molecular disk as well. A comparative study in a more quantitative way is

in progress. Finally we mention that the difference in the activity might be due

to different Ico to H 2 conversion rate in those galaxies: the high molecular con-

tent in NGC891, IC342 and M83 might be an apparent phenomenon caused by a higher

content of heavy elements in their central regions than in M82 or in normal disks

of NGC891 and our Galaxy, because we have used the usual conversion factor as noted
above.
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DISCUSSION

UNGER:

A VLA map of OH absorption in M82 shows a rotating molecular ring on a scale of a few hundred pc

(Weliachew et al. 1984, A and A 137 335). How does this relate to your expanding CO ring?

SOFUE:

Positionally it coincides with the CO ring, though I haven't done detailed comparisons. Neither have I

checked whether the OH ring is expanding. But it is quite likely that they are both in the same site on a ring,

being illuminated and compressed by the star formation burst and the central activity.
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HECKMAN:

Pat McCarthy, Wil van Breugel, and I have recently obtained long-slit optical spectrophotometry of the

emission-line filaments in M82. These new data strongly support the type of bi-polar wind model you have
described. First, we find that the gas pressure in the filaments drops roughly like 1/r 2, as a simple wind

model would predict. Second, the relative emission-line strengths can be well fit by standard shock models.

I will be discussing these and other related data during my talk Thursday afternoon.

SOFUE:

That's important information. Thank you for the comments.
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